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Long-Time Behavior of Navier-Stokes Flow on a 
Two-Dimensional Torus Excited by an External 
Sinusoidal Force 
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In this paper we study the Navier Stokes flow on the two-dimensional torus 
S I x S  I excited by the external force (k2 sin /o,, 0) and find the long-time 
behavior for the flow starting from some states, where S I=  [0, 2n](mod 2nL 
Especially Ibr the case k = 2, it follows from an analysis and computation that 
the Navier-Stokes Ilow with the initial state cos(rex + ny) or sin(rex + ny) will 
likely evolve through at most one step bifurcation to either a steady-state 
solution or a time-dependent periodic solution for any Reynolds number and 
integers m and n. 
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1. I N T R O D U C T I O N  

Let k >/2 be a positive integer and T 2 the two-dimensional torus S ~ x S i, 
with S I the unit circle [0, 2r0(mod 2r0. We consider an incompressible 
viscous fluid motion on T 2 sinusoidally excited by an external body force 
(k 2 sin ky, 0). 

The dyrtamical behavior of this fluid flow system with k a positive 
integer defined in terms of velocity u = (u~, u2) and pressure p is described 
by the following Navier-Stokes equations: 
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O,u - Au + 2u.  Vu + Vp = (k  2 sin ky,  O) 

V. u = 0  

u(t, O, y ) = u ( t ,  2rr, y), 

u(t, x,  O) = u(t, x,  21t), 

y e [0, 27r), t>~0 

x E [0, 2zr), t~>0 

(1) 

Here A and V denote the Laplacian and gradient operators, respectively, 
0,=0/@,, and 2 > 0  is the Reynolds number defining the viscous fluid 
motion. 

To ensure the uniqueness of the solution to Eq. (1), we require the 
additional condition 

f u(x, y ) d x d y = O  (2) 
T 2 

The problem defined by Eqs. (1) and (2) was first fonrtulated by 
Kolmogorov ~ and is also referred to as the Kolmogorov problem (see, for 
example, Okamoto and Shoji ~181). 

This fluid motion with k = 1 and 2 > 0 is simple, since Meshalkin and 
Sinai It7~ obtained the flow described by the equations 

@,u - Au + u. Vu + Vp = 2(sin ky,  O) 

V. u = 0  
(3) 

when k = 1 associated with Eq. (2) on T z is attracted by a single steady- 
state solution for all real 2. This global stability result was also re-proved 
by Marchioro)141 

Bifurcation analysis on the stationary Navier-Stokes flow represented 
by the equations 

- v  Au + u.  Vu + Vp = ),(sin y,  0) 

V. u = 0  
(4) 

on the torus (S  I/a) x S j with 0 < a < 1 was examined by Iudovich. Isl It is 
interesting to note that Okamoto and Shoji c~8~ provided numerical 
experiments concluding the absence of secondary step bifurcations in 
Eqs. (4) by computing an n-mode truncation model for Eqs. (4) with n >~ 
200. Such a result is also partially confirmed by the mathematical analysis 
and numerical experiments herein. 

For lower bound estimates for the Hausdorff dimension of the global 
attractors described by the above equations, see ref. 2. Recently, Liu 1~2~ 
gave an extended study on the estimates with respect to Eqs. (2)-(3) by 
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developing the technique of Babin and Vishik, ~2~ Iudovich, ~ and 
Meshalkin and SinaiJ ~71 For  the numerical analysis of a Navier-Stokes 
flow in a bounded domain attracted by a steady state, see refs. 4 and 20. 
Franceschini et al. c5~ and Jolly ~9~ made computational studies on the long- 
time behavior of the solutions to Eqs. (1)-(2) with more general forcing 
terms. 

Here we consider the dynamical problem from a more analytical view- 
point. 

For  convenience of analysis, we use the stream function ~k with 
vorticity A~, = O,.u~ - 0.,.u2 and rewrite Eqs. ( I ) - (2)  in the form 

a,q,-Aq,+~3-'(O,.q,O,3q,-O,.4, O.,.Aq,)= -~cos~y (5) 

associated with the modified condition 

It'- ~b(x, y ) d x  dy = 0 (6) 

ensuring uniqueness of solution. Thus Eqs. (5)-(6) define an infinite-dimen- 
sional dynamical system in the Hilbert space 

associated with the norm 

We shall use the concepts with respect to dynamical systems as defined in 
ref. 7. 

By Fourier expansion the solution ~k(t, x, y) can be written as 

~,(t, x, y) = ~ ~,,(t) cos ny+  ~ (q ...... (t) cos (mx+ny)  
I I  = 1 m = I .  I t  = - -  - z  

+ (  ...... (t) sin(mx +ny)) 

Given a dynamical system starting from an initial state, it is not easy 
to predict if the system will evolve through a sequence of bifurcations to a 
steady state or a periodic state or even a fully chaotic state. However, as 
far as Eqs. (5)-(6) are concerned, it is possible to predict the long-time 
behavior of this dynamical system starting from some interesting initial 
states. 
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In this study, by analysis and computation we discuss the long-time 
behavior for the solutions to Eqs. (5)-(6) with initial states in either of the 
following flow invariance subspaces: 

H,- { H2 I 
i . k  ~ 

HT. ~. e H  2 

+ E 

q, = y~ ~,, cos , k y  + y~ 
t l =  I m =  I . t t ~  - -  - /  

o "  

~b = ~ ~,, cos nky 

tl ...... sin( 2hnx - Ix + 2nky ) 

q ...... cos(m/x + n k y ) }  

( ...... cos( 2mlx + 2nky)}  

where/~>0 is an integer. We find that every solution to Eqs. (5)-(6) with 
initial state in H-'t.k (resp. /~.~�9 will likely go through at most one step 
pitchfork bifurcation and evolve toward a steady-state solution in H~. k 
(resp. /7 ~. k). 

Additionally, in order to give more evidence for the long-time 
behavior of other solutions to Eqs. (5)-(6), we take k = 2 as an example to 
study the fluid motion in either of the following flow invariance subspaces: 

3r ~2 H 2 �9 /.2= ~ ~b= ~,,cos2ny 
t t  I 

+ ~ q ...... cos(2mlx -- lx + 2ny + y ) 
t J t  = I .  I t  = - ~ .  

~'- )} 
+ ~ ( ...... cos( 2mlx + 2ny 

111 ~ I ,  I t  = - -  

�9 /.2= E H  ~b= ~ ~,,cos2ny 

+ y, 
m = I .  n = - -  ,~" 

+ i 
m =  l , n =  - / 

q ...... sin(2m/x -- Ix + 2ny + y)  

...... cos( 2mlx + 2ny)'~ 
J 

for integer 1>t O. Our investigation shows that the attractor of Eqs. (5)-(6) 
with k = 2  reduced in either •7.2 ' or ~2, ~.2 for l ~  1 coincides with the 
steady-state solution - (1 /2 )  cos 23,. Moreover, when the Reynolds number 
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varies, - (1 /2 )  cos 2y loses stability in y#2 (resp. ,z ~. 2 "gCgL 2), and bifurcates into 
a time-dependent periodic solution which is stable in ~T.  _, (resp. "J#L 2). 

Consequently, for any Reynolds number 2, integers m and n, and for 
any solution r to (5)-(6) with k = 2  starting from either 
i(O,x, y)=cos(mx+ny) or if(0, x, y)=sin(mx+ny) in H 2, it seems that 
i ( t ,  x, y) approaches either a steady-state solution or a time-dependent 
periodic solution. 

In another study, we shall, however, find that Eqs. (5)-(6) with k ~> 3 
have a time-dependent periodic solution which undergoes further step 
bifurcations other than pitchfork and Hopf bifurcations as the Reynolds 
number 2 increases. 

The outline of this paper is as follows: In Section 2, we investigate 
pitchfork bifurcation for Eqs. (5)-(6) reduced in H~. k. In Section 3, we 
provide a four-mode truncation model for Eqs. (5)-(6) reduced in H~. k and 
show that, for this truncated system, every bifurcated equilibrium point is 
always stable irrespective of the magnitude of the Reynolds number. In Sec- 
tion 4, to support this stable criterion, we additionally introduce a 17-mode 
truncation model for Eqs. (5)-(6) reduced in H~. k. Numerical experiments 
on this model with k = 2 and 3 corroborates the findings in Sections 3 and 
4. In Section 5, we examine time-dependent periodic solutions of Eqs. 
(5)-(6) with k = 2 reduced in -YgT. 2- Finally, in Section 6, we present some 
remarks showing that the results in Sections 3-5 remain valid whenever 
HT. k and ~7. 2 are respectively replaced by HT. ~. and J:~. 2- 

2. PITCHFORK BIFURCATION 

In this section we study pitchfork bifurcation for Eqs. (5)-(6) in H~.,. 
Let us first note that H~.k~H]_~.k and every subspace H~., is flow 

invariant with respect to Eqs. (5)-(6). 

L e m m a  2.1. Let />~0 and 2 > 0 .  Then for every initial function 
~,oeH~. k, Eqs. (5)-(6) admit a unique global solution 

Proof. 

with 

i e  C([0, c~) ;H 2 I,k) 

For every j>/1,  it is not difficult to verify that 

A -t(8.,.~b./O,.Aii- 8.,.~: 8.,, A~j) e H~ k 

J J 

i f /=  ~ (,, cos nky + ~ r l ...... cos(m/x + nky) 
I I ~  ] l i t  = ] ,1/= - - j  
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By an elementary manipulation, the desired assertion follows from the 
Galerkin approximation procedure (see, for example, ref. 19). The proof is 
complete. 

With the use of Lemma 2.1, we rewrite Eqs. (5)-(6) in the form of a 
functional ordinary differential equation 

d~dt z]~ + Bk. ~(~,) = 0, ~b(t)( .,- )=  ~b(t,. , ") ~H2/,I, (7) 

representing an infinite-dimensional dynamical system, where 

B,. ~.(~) = )~A -'(O,.qJ 0,.~4, - a , . q ,  0,.Aq~) + k c o s  ky 

since the pitchfork bifurcation problem for this system is largely based on 
the spectral behavior of the operator 

- A  + 2Ak = --A + 2A - t  sin kv(A + k 2) 8.,. 

the linearized operator of the stationary Navier-Stokes equation 
-A~b+Bk.A~9)=O at the steady-state solution - ( I / k )cosky ,  or the 
FrSchet derivative of the operator -A~b + B,.>,(~O) at - ( 1 / k )  cos ky. 

Let us begin with the investigation of the spectral behavior of the 
operator - z l  + 2A k in H~. k. This spectral problem was partially studied in 
H-" by Iudovich (s) and later by Liu ()2) in a similar way. However, this 
problem is now investigated in H~. k together with its subspaces. It is con- 
venient to prove the following lemmas in detail by an approach developed 
from the technique proposed in refs. 8, 13, and 17. Also see refs. 4 and 20 
for the study of the resolvent estimates of the linearized Navier-Stokes 
operator in a general bounded domain. 

Lemma 2.2. For k ~> 2, there exist exactly k -  1 real functions and 
k -  1 real numbers 

PI( '~')< "'" <Pk -I( 2 ) 

satisfying 

with 2 > 0  and 0 < 2 ~ < . - .  <2 ,_  

2(k 2 +/2) 2 d 
PA21) = 0' k'-- l ' -  <23,  ~-~ p/(2) < 0 

d i m k e r ( - A + 2 A , - p ) < ~ l  in H~. k 

for l = 1 ..... k -  1 and p ~ { p ~ C [ Re p < k2}. This equality holds if and 
only if p = p1(2). 
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Proof .  First, to s tudy this spectral  p roblem,  we can suppose,  wi thout  
loss of  generality, that  H 2 is a complex  space. For  every l>~0 we see that  

~]J e H 2 ~ = ~, {,,, cos{ lx  + m k y  ) 
lit = 

is an invar iant  subspace with respect to the ope ra to r  - A + 2 A ~ , ;  the 
spectral p rob lem 

can be reduced in this subspace instead of  in H~.~.. Thus  by an e lementary  
manipula t ion ,  this spectral  p rob lem with an eigenfunction 

; r  

qJ = ~. ~ l. ,,, cos( lx  + m k y  ) in H-" (8) 
nl ~ "1 

becomes 

2fl, .... 2fl, .... 
+ (/Y~.,,,- p)  ~.,,, = 0 (9) 

for any integer m, where 

f l l . , , , = l ' - + m ' - k  ~- and ~ l . , , , = l ( l ' - + m 2 k 2 - k  "-) (10) 

It is not  difficult to find that  ~. ,,, :Y: 0 and ~.o. ,,, = 0 for any integers l >~ 1 and 
m. This allows us to define, for m/> 0 and / t> 1, 

~, . , , ,~ ,  .... ", . . . .  ~,.-,,, 
, - and ( I1)  )/.,. )'z. m - -  

~l.m-l~l.m I ~l.l-m~l.l m 

In part icular,  we define 1/),k. +t = 0  since ,k.c~=0. Thus  we see that  Eq. (9) 
is equivalent  to the following system of  algebraic equations:  

2 ( f l , .  o - p ) , , 6 ' , . , ,  
2~/, ~ + )b. - i = )'/. i when 1 :P k 

2(,_c,,,-p),_/.,,,+BB 1 =Tt., , ,+l for m>~ 1 
J'OLI. m )~1. ,,, 

2 ( p ,  , , , -  p )  p ,  . . . . .  , 1 
�9 -t'- ) / . . . .  ~= for m ~ < - - I  
J-~/. m ) I. m 
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Since @eH 2 implies the boundedness  of  7,, +,,, with respect to m, we have 
)'t. +_,,, ~ 0 as m ~ -4- or, and hence 

7 , .  , ,  = - -  7 c  - , , ,  - 2 ( , 8 , .  ,,,- p) fit. ,,,.+ 

~0{/. m 

- 1  

2(P1,,,,+,--P)P,,m+, 1 
4-_ 

' ~ / ,  m + I 

, m > ~ l  

(12) 

and so 

2(,8t. , - P )  ,8/., --1 

2or,,, 2(,St. 2--P) ,St. 2 1 ' + 
~.O{t. 2 2(,st, 3 - - p )  ,st, 3 1 _ l  

~O~ l, 3 

l = k  

(13) 

( ,8 l .o-P} ,8l, o - 1  
2~ o 2(fit. I - P ) tic I 1 ' 

20{1, I 2(fll, 2 - -  p )  ,81, 2 1 +-:- 
2at. 2 

l # k  

(14) 

It is readily seen that  Eqs. (13)-(14)  are not  true whenever  l>~k and 
Re p ~< 4. Therefore  it is sufficient to exanfine Eq. (14) with l = 1 ..... k - 1. 

Second, to show the lack of  a nonreal  eigenvalue p, we suppose, on 
the contrary,  I m p  # 0. Then,  for m >~ 0, 

larg (2(fl'."-'- P--) fll."') l = ,arg(fl1.,,,_ p )[ 
)~ t .... J I 

arg (2(flt.,,,+ ~ - P )  fll,,,,+ ,)  
> ~OLI, m + 1 

This together  with Eq. (14) yields 

larg(fl"~176176 2o~1. o 

('2(,81 I - P) ill, I / 
< larg \ ' ~ . T  I < l a r g ( P , . o - P  ) ' 

which leads to a contradict ion.  
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Third, to give the functions pt(2), we define, for m ~> 1, 

g2 .. . .  ,(l, 2, p ) =  2 ' B " ~  . . . .  , ( f l , , o - P ) ( f l , , 2  . . . .  , - P )  
2 2 ~ I .  00~I, 2m - I 

g2,,,(/, P) = 2~L oflt. 2'"(fit. 2" ' - -  P) 
flt. oczt. 2,,,(flt. o - -  P ) 

Multiplying Eq. (14) by 2~/. o/[ (fit. o - P) ill. o ] yields 

= 

g~(l, 2, p )+  
g2(l, p) + 

g3(l, 1, p) + 
1 

g4(/, p) + 7-- 

Denoting the right-hand side by f( l ,  4, p) and observing that 

Ovg2 .... ,(l, 2, p)<O<O,,g2,,(l ,  p) for p </~/.o 

we obtain 

81,f(l, 2, p )>O for P<flt.o (15) 

Hence the observation 

lira f(I, 2, p )=c~,  lira f(I,  2, p)--O 
P / ' i l l  0 p ~ - -  c~ 

implies the uniqueness and existence of p = p / (2 )<  fit. o satisfying 

1 = f ( / ,  2, pt(2)) (16) 

For such an eigenvalue p~, it follows from Eq. (11 ) that 

~l.o=C, ~i.+,, ,=c ~'L+'''''')'t'-+lctL~ m>~l 
~ L  + m 

where c ~ R is an arbitrary constant; that is, the eigenfunctions with respect 
to Pt form a one-dimensional space. 
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Finally, it remains to verify the existence of 21 and the monotonicity 
of P /and  2/. From the inequality 0~. g2 . . . .  ,(/, 2, p) < 0 it follows that 

O;.f(1,2, p)>O for P<fll.o (17) 

This together with 

lira f(l ,  2, 0) = 0 and lim f (  l, 2, 0 ) = 

implies that there is a unique positive number 2/such that 1 =f( l ,  21, 0), 
which also gives 2~ > 2(k 2 + l~-)2/(k 2 - 12), since f(l ,  21, O) < 1/g~(l, 21, 0). 

To prove the monotonicity of 2 /and P/, we note that, for 1 < / +  1 < k, 

g2,,, ~(l+ I, 2, p) >g2 .... ~(l, 2, p), g2,,,(l+ i, 2, p) <g2,,,(l, 2, p) 

and hence f(  l + 1, 2, p) < f (  l, 2, p ), which shows that 

1 =f (L  2i, 0) = f ( l +  1, 2t+ ~, 0) <f( l ,  3./+ j, 0) 

1 =f( l ,  2, p/(2)) = f ( l +  1, 2, p,§ ,(2)) <f( l ,  2, pt+ t(2)) 

Consequently, by Eqs. (15) and (17), we have 

2~<21+ I and p/(2)<p/+~(2) whenever 1 <~l<~k-2 

Furthermore, Eq. (16) gives 

df(l, 2, p/(2)) ctpt(2) 
O -  d2 - O ~ f ( l ' 2 ' P l ( 2 ) ) + O l ' f ( l ' 2 ' P l ( 2 ) ) - - ~  

which together with Eqs. (15) and (17) implies (d/d2)p/(2)< 0. The proof 
is complete. 

The spectral problem in Lemma 2.2 may also be considered in H~.k, 
the subspaces of H~. k. In fact, the proof of Lemma 2.2 provides the 
following result: 

Coro l la rv  2.1. For 1=1 ..... k - l ,  let n=[k / l ]  when [k / l ]<k/ l ,  
and let n = [k/l] - 1 when [k/l] = k/l, where [k/l] denotes the integer part 
of k/l. Suppose that p~(2) with i =  1, 2l ..... nl are defined as in Lemma 2.2. 
Then, for 2 > 0  a n d p ~ { p ~ C l R e p < k 2 } ,  

d i m k e r ( - A + 2 A a . - p ) ~  1 in H~. k 

and the equality holds if and only if p =p;(2).  
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Additionally, the first step in the proof of Lemma 2.2 implies the 
following result with respect to H~.~. for e i t h e r / = 0  or l>>,k: 

C o r o l l a r y  2.2. Consider Eq. (7) in the c a s e / = 0  or l>>,k. Then the 
steady-state solution - ( l / k )  cos ky is always stable for all 2 > 0. 

To obtain a pitchfork bifurcation result, it is necessary to introduce 
the following simple estimates. 

I . e m m a  2.3. Let l =  1,..., k -  1, 2 > 0, and -r L ;. denote the set of the 
steady-state solutions of Eq. (7). Then following assertions are valid. 

(i) Both d ~d and d-~Bk.;, are compact and continuous operators 
mapping H~. a. into itself, and 

IIA '(G~O,.36-O.,.6o.,.MJ)II=o(IIA611) for 6~H~.  k 

(ii) We have 

IId611 ~< 2k2zc for @~ZI.;, 

Proof. (i) We see, for ~ H ~ ,  k, 

Ilzl3/2(d -'Aq~)ll = II(--d) -,/2 sin ky O,.(d + k 2) 611 

~< Ilsin ky (d6  + k26)11 

113611 + k  z 11611 4(1  +k-')IIzJ611 

On the other hand, applying the Sobolev imbedding theorem (see, for 
example, ref. 6) and the H61der inequality, we obtain 

1 ( , ) 

= IIA':4A -'(o,.6 o M6  -o.,.6 o,.3qJ)ll 

= II( _ , j ) -3 . .4  (o,.(o.,.4, Aq~)- o.,.(o.,.6 3~,))11 

[l(--z~)- 1'4 (•3.1/j 36)11 + I 1 ( - 3 ) - ' , 4  (0.,.6 36)11 

~< c,( 110.,.6 3611,4~ + 110,.6 3 6  II L42) 

~< c,( rio,. qJ II L~ + 110,.6 II L,) Ilz16 I1 

<<. c2 lid61[ -~ 

822 ,% I-2-21 
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where c~ and c 2 are constants. The continuity of A ~A and A-~B;, is now 
obvious. By the Kondrachov theorem (see, for example, ref. 6) we see that 
the norms ][A 3''2. [1 and []A 54. I] are compact with respect to the norm 
[]A. IL, and thus assertion (i) is valid. 

(ii) Multiplying the stationary equation with respect to Eq. (7) by 
A2~k and integrating over the torus T 2, we obtain, after integration by 
parts, immediately the desired estimate 

l[A~bll<<,llVA~bll<<,llk2coskyll<<,2k2~ for ~b ~ S,. ~. 

The proof is complete. 

The main result of this section reads as follows: 

T h e o r e m  2.1. Let 2~ ..... 2k ~ be defined as given in Lemma 2.2, 
and let (Po(Y)= the steady-state solution - ( 1 / k )  cos ky. Then the equation 
(d/dt) O-A~b+Bk.A~P)=O in H~. k, Eq. (7), admits k -  1 supercritical 
pitchfork bifurcation points (2~, cpo) ..... (2k ~, rpo); in other words, there 
exists a small number fi > 0 such that, for every 1= 1 ..... k - 1  and every 
2 / < 2 < 2~+6, this equation has two stable equilibrium solutions O~.a and 
~b~. ;~ satisfying ~b~. ~.1 = ~b~. ;.i = q~,~. Moreover, this equation has no other bifur- 
cation points along the half-line {(2, (Po)I 2 > 0}. 

As a consequence of this theorem and its proof, we can obtain k -  1 
bifurcation points of the stationary system - A r  + B~.. ; . (~)= 0 in H~. k by 
applying Krasnosel'skii's Theorem. ~t~ But to deduce the pitchfork bifurca- 
tion of Eq. (7), we will provide a detailed proof. This is achieved by using 
the Larey-Schauder degree method of studying nonuniqueness problems 
(see, for example, refs. 10 and 19). 

Proof. In order to use the Larey-Schauder degree method in the 
space H-' ~.a., let us adopt the following notation: 

2~. = 2k i + 1 ,  r = 2k-~zc, ~, = (2 /+  2/+ i)/2, l = 1  ..... k - 1  

1 F;.(~)=~b-),A -'A~-A-IBk.;.(~b)-~coskv, ~ I ~ H  2 
. I . k  

~.k I IIAq'll <s} 

t2, , , . . , :={r }, 0 < ~ < r  

where 2~ is defined in Lemma 2.2. 
Now the equilibrium or steady-state solutions of Eq. (7) become the 

solutions of the equation F;.(q~)= 0, which are to be found in the domain 
s'2~. ,.. ,: in the following. 
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By Lemma 2.3, the choice of r implies 

OI. rZ) U ~'1,;'. 
),~ [;'4.2J + (:io] 

Using Corollary 2.1, we see that for every 0 < 6 < c5 o there is a small 
e = e(~) so that the operator  F ~ ( ~ ) - - 0  has only the trivial solution 0 in the 
ball 0~. 2,: for 2 / +  6 < 2 < 2 / + 0(). In view of Lemma 2.3, A ~A and A IBk. 
are compact  in H~. k. Hence, the following Larey-Schauder  degrees of F;. 
are well defined over O/. r, O~. ,:, and (2~. ,. ,: with respect to 0: 

deg(F~.,O~.,.,O) for 0 < 2  

deg(F~, O1.,:,0), deg(F~,g2t. ,. .... 0) for 2 / + c 5 < 2 < 2 / + ~ o  

On the other hand, for 0 < 2 < 2 ~ + ~ o ,  if a~(2) is the eigenvalue of 
I - 2 A  IA in H~. k , o r  

A ~ , + - - A ~ = 0  in H~. k 
1 - a / ( 2 )  

then Corollary 2.1 gives 

cr/(2) = 1 - 2/2 / for 0 < 2  < 2 / + ~ ,  

This shows, in conjunction with Corollary 2.1, that 

deg(F;,  O/, ,., 0) = 1, 0 < 2 < 2/ 

and so 

(18) 

deg(F~,Ot. , . ,O)=l,  0 < 2 < 2 / + ~ o  

since the choice of r implies that the problem F~.(~)= 0 has no solutions 
outside the ball O~. r for 0 < 2 < 2~ + ~5o. Applying Corollary 2.1, Lemma 2.3, 
and Eq. (18), we deduce that 

deg(F~,Ol . , : :O)=deg(I -2A-IA,  01 .... 0 ) = - 1 ,  2 / + f i < 2 < 2 / + 6  o 

and 

deg(F~, (21.,..,:, 0 ) =  deg(F~., 6b. ,., 0 ) -  deg(F~, Or.,, 0) =-2 

for 2~ + 6 < 2 < 2 / + ~o- This shows that F ; . (~ )=  0 has two solutions in the 
domain Q~. ,.. ,:. 
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Additionally, by Corollary 2.1, the system (d/dt)~-AF~.(~b)=0 in 
H~. k is globally stable and has a unique equilibrium solution 0 when 
0 < 2 < 2~, and the trivial equilibrium solution 0 possesses a one-dimen- 
sional unstable manifold when 2~<2 <2t+~. Hence 0 can only bifurcate 
two nontrivial equilibrium solutions, which are stable because of con- 
tinuity. This implies that (d/dt)~-AF~.(~,) = 0  in H~. k admits exactly two 
nontrivial stable equilibrium solutions for 2z+ 5 < 2 < 2r 2fi, provided 
that 5 > 0 is sufficiently small. The proof is complete. 

3.  F O U R - M O D E  T R U N C A T I O N  S C H E M E  

The proof of Theorem 2.1 provides the long-time behavior of the 
infinite-dimensional dynamical system described by 

(d/dt) ~b--2A~ + B~(~h)=0 (19) 

in H ~ ,  for 1= 1 ..... k - 1  when 2 is near 2/. In order to derive more infor- 
mation for all 2 > 0 ,  we truncate Eq. (19) in H~. k into k - 1  systems of 
ordinary differential equations. 

The analysis of Section 2 allows a suitable subspace to be defined on 
which Eq. (19) in H~. ~. can be projected. Note that the solution of Eq. (19) 
in H~.~ is of the form 

qJ = ~,,,(t) cos inky + ~ + ~.t. ,,,(t) cos(Ix + inky) 
m = I I I m = - -  ~ .  I = k m = - , ~ , ~  

Lemma 2.2 shows that the only term contributing to the spectral problem 
of the operator - A  + 2A~. is the second one on the right-hand side of this 
equation. It follows from Lemma 2.2 together with Eqs. (8), (11 ), and (12) 
that -A+2A~.  in H~. k has exactly k - I  eigenvalues pl(2) ..... pk_,(2) 
associated with k -  1 eigenfunctions 

where 

(l.,,,cos(lx+mky), l= 1 ..... k -  1 

)'/, {J = 1, ~/, _+,,, _ Yr. +,,, " " " )'t. + I ~ o, m >1 1 
0~1. + m  

From Eqs. (10) and (12) we see that 

~ m O L I ,  m - I " " " Ol ' l ,  0 

l~,,,,,l < •  I 2,,,1# , m  , , , - P , ( 2 ) ) f i t , , ,  ( f i t ,  - p ~ ( 2 ) ) f i t ,  



N a v i e r - S t o k e s  F l o w  on 2D Torus 315 

which vanishes quickly as Iml increases. Therefore, 

span{ cos ( /x -ky) ,  cos lx, cos ( l x+ky)} ,  l =  1,..., k -  1 

are key subspaces of H 2 ~. ~. to study the spectral properties of the operator 
- A  + 2Ak. Additionally, noting that the fluid motion described by Eq. (19) 
is excited by the spatial force - k  cos ky, we thus choose 

span{cosky,  cos( Ix - ky ), cos lx, cos ( l x+ky)} ,  l = 1  ..... k - 1  (20) 

as the desired the subspaces of H 2 Lk" Equation (19) in H L k  is projected 
onto these spaces as follows: 

~l  = cos  ky,  ~ 2 = c o s ( l x - k y ) ,  ~b3 = cos Ix, ~,b4 = cos(lx + ky) 

~// = "e~l(t) ~bl + X2(/) 42 + X3(/') ~b3 + X4(t) ~b4 

for every / = 1  ..... k - l ;  the truncation of all the terms of Eq. (19) 
orthogonal to the space defined in Eq. (20) gives the following result: 

(a, ~ - Ar + ,~J - ' ( a , . $  a , J ~ ,  - a ,q,  a , ~ r  ~b,,) = ( - k  cos ky, r 

for n = 1, 2, 3, 4, where (4', cp) denotes the inner product J r ' - ~  dx dy. After 
algebraic manipulation, this produces the set of coupled equations 

dX  I 2lk 
td  ~ + k'-xl + T X3( X2 - )(.4) = - k  

dX~ 
- + (12 + k  2) X 2 

dt 
2kl(k2 - I2) X I X~ = 0 
2(12+k 2) 

dX~ Zlk 
d-~ + I2x3 - T x , ( x , _  - x 4 )  = 0 

dX4 , k2 2kl(k 2 - 12) 
~- + ( / - +  )2"4+ 2(12+k2) X~Xs=0 

fi'om which we see that 

d ( X , +  X4) V(12 +k2 ) (Xz+  X4)= 0 
dt 

This shows that X4( t )+Xz( t )  decay exponentially, and by letting 
)(4 = - X 2 ,  we obtain the following coupled equations describing a three- 
dimensional dynamical system: 
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dXi 
dt + k2Xt + "~lkX3)(2 = -- k 

dX ,  17 2kl(k'- - l 2) ~--+(-+k2)X2 2(12+k2) XIX3=O 

d X  3 
dt ~- 12X3 - 21kX~ X,_ = 0 

(21) 

for l = 1 ..... k -  1. As deduced in Section 2, we denote by q~' the dynamical 
system such that q ~ ' ( X ( O ) ) = X ( t ) = ( X f f t ) , X 2 ( t ) , X 3 ( t ) ) ,  and denote by 
D~o'(X(0)) the Fr6chet derivative of the operator ~o' with respect to the 
initial data X(0). It follows from Eq. (21) that 

(d/dt) Dq~'(X(0)) h • = M ( q ~ ' ( X ( O ) ) )  Dq~' (X(O))  h • 

Dq~~ = h  l ,  h = ( h | , h 2 ,  h 3 ) ~ R  3 

where 

M(X)= 

_ k 2 _ ) ~ l k X  3 - -  ) L l k X  2 \ 

) 2kl(k 2 _ / 2 )  Zkl(k z _ 12) 
2(t~+k,_) x: -(t2+k "-) - ~ + - ~  x, 

2klX,_ 2klXi - 12 

In particular, the matrix 

M(( - 1/k, 0, 0)) = 

- k  0 0 / 

0 - 1 2 - k  2 "~1(k2-12) 
2(12 + k  2 ) 

0 - ) d  - I  2 

has eigenvalues 

~, = _ k  2 

21-, + k 2 + [ k  4 + 22_~12(k2 _ 12)/( l  2 + k2 ) ]  J2 
o ' * -  

2 

_212  _ k 2 + [ k 4 + 22212(k2 _ 12)/( l  2 + k2)  -] t,,2 
p ? ( , ~ )  - 

2 
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On setting 2* = [ 2 ( k 2 + 1 2 ) 2 / ( k 2 - 1 2 ) ]  =/2, we find that a*,  a* < 0  for all 
2 > 0  and 

<0  when 2 < 2 *  

p * ( 2 ) =  =0  when 2 = 2 *  

> 0  when 2 > 2 *  

It is easy to verify that Eq. (21) with 2>2~* has exactly two other 
equilibrium points 

),,2) 
Y = ( Y , ,  Y2, Y3)= --~--~,~ --1 , - -~-  - 1  

By denoting p ( p ) = d e t ( p I - M ( Z ) )  the characteristic polynomial of the 
matrix M at the nontrivial equilibrium point Z, we obtain, for 2 > it*, 

p(p) = d e t ( p I -  M(Y))  

~_ (k 2 + p) ((12 + k 2 + p)( l  2 + P) 

( 2 k l ( k  2 - 12)(1 ,- + p) 
+ 2klr, \ k-K~ ~i 

(2kl) 2 (k 2 - I  2) y } \  
2(k2 + / 2 ) J 
(2kl) 2 (k 2 - 12) \ 

Y3 q 2(k 2 + l 2) Yi Y2 ) 

((~.k/) 2 (k 2 _ 12 ) 2k lY2 )  +2klr2\ 2~-/-~+--~_, ) r, r3+(l :+k2+p) 

/ 2 k l \  "- ~ ~ =(~2+p)(Z2+k2+p)(t'-+p)-~-~) (k-+l-)(~-+p)v~ 

(2kq: ?kt : 
+\.2*j  (k-~ +l-')ff-'+P) Y~+2 \-~-. j (it-' +/2) ,tklY, Y~ Y, 

+ ( 2 k l ) 2 ( k 2 + 1 2 + p )  Y~ 

= (k  2 + p)( l  2 + k 2 + p)( l  "- + p) + 12(k2 -or- l 2)(k2 + p)  
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+ 2-~ p+4k21"(k2+l 2) ~ -  1 

Now Y and Z can only become unstable equilibrium points when p(p) 
has a root on the imaginary axis {pEClRep=O}, which, however, 
contradicts the observation 

)~ ( ~ - 1 ) > 0 , ) ~  >)~? 2(k2+12)~l, k2(k,_+212)>4k212(k,_+l,_) 2 

Thus, we find that the eigenvalues of the matrices M(Y) and M(Z) remain 
in the half complex plane { p e C I Re p < 0} for all 2 > 2*. This derivation 
allows the following summary: 

Theorem 3.1. Equation (21) w i t h / =  1 ..... k -  1 possesses a unique 
bifurcation point 

(),~',(-1/k,O,O)), )~'=[2(12+kZ)2/(k2-12)] ~2 

and this is a pitchfork bifurcation point. The global attractor of Eq. (21) 
is the single point { ( - I / k ,  0,0)} when 2~<)~?, and consists of two 
heteroclinic orbits joined at the saddle equilibrium point - Ilk, 0, 01 when 
;,>2*. 

Based on this theorem, now we give phase portraits for the global 
attractors of Eq. (21) for k = 2, 3 as examples. 

Rewriting Eq. (21) in the form dX/dt=J).k.;(X), X = (Xt, X2, X3), we 
can discretize Eq. (21) by the four-step Adams-Bashforth method (see, for 
example, ref. 11) to obtain 

X h x,,+, = ,, + ~  (55]/.,. ~.tx,,)- 5%.,.. ~.t x,,_, ) 

+ 37J). ~-. ~.(X,,_ 2 ) -  9f/.,. ~.(X,,_ 3)) 

with step length h=0.0005, and ( l , k ) = ( 1 , 2 ) ,  (1,3), and (2, 3). To 
illustrate the typical solutions to these equations, we shall, for demonstra- 
tion, take a Reynolds number 2 = 50 or 2 = 200, and take the two initial 
data 

X -+ = ( - l / k ,  0, "4-0.001) 
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Fig, I, Phase portraits on the (X3. X:) plane for the global attractor or the one-dimensional 
tmst~lble manilbld of the saddle point I - 1/2, O. O) Ibr Eq. 121 ) with k =2  ~tnd / =  I. Here (a) 
).= 50. {b) 2=200.  

The numerical experiment in the form of phase portraits on the 
(X 3, X~) plane is displayed in Fig. 1 for k = 2 and in Fig. 2 for k = 3. X + 
and X -  are very close to the unstable manifold of the equilibrium 
point ( - I / k ,  0,0) ,  and so the two orbits produced by X § and X -  can 
be regarded as the two heteroclinic orbits connected at the point 
( - l / k ,  0, 0). From Theorem 3.1 it follows that the unstable manifold of 
( - I l k ,  0, 0) consisting of these two heteroclinic orbits joined at the saddle 
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Fig. 2. Phase portraits on the (A'3, X 2) plane for the global attractor or the one-dimensional 
unstable manifold of the saddle point ( - I / 2 . 0 , 0 )  of Eq. (21) with k = 3 .  Here (a) 
I/, 21 =11, 50), (b) (I, 2 ) = (  1,200), (c) 1/. 2 ) = ( 2 ,  50), (d) (I, 2 ) = ( 2 ,  200). 
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point X0 is the global attractor of Eq. (21). From Theorem 3.1 or from the 
above numerical experiment it is readily seen that the topological structure 
of the attractor remains unchanged as 2 increases. 

4. 17-MODE TRUNCATION SCHEME 

To support the stable results deduced in the previous section, we shall 
provide a 17-mode truncation model for Eq. (19) in H~. k and provide 
numerical experiments for this model for k = 2, 3 showing corroborative 
evidence to the findings of Section 3. Before computation, let us analyze 
this new system to strengthen the credence of the numerical results. It is 
useful to note that every solution of Eq. (19) in H~,~. is of the form 

~O= L ~,,(t) coskny+ L L q ...... (t) cos (mlx+kny)  
I t  = | l l l  = | H = - -  e• 

This Navier-Stokes flow is excited by the spatial force - k  cos ky, and the 
pitchfork bifurcation stems from the term ~,-'L --~ ~ 1. " COS(Ix + kny), which 
then influences the terms Y',~'- . . . . .  r/2 ' ,, cos(2lx + kny) and Y'.',~f= i ~,, cos kny. 
Furthermore, the modes cos( lx+kny)  and cos(2L, c+kny)  have limited 
symmetry with the modes c o s ( l x - k n y )  and cos(21x-kny) ,  respectively, 
and by numerical experiments it can be shown that ~,,, q t .... and r/~ . . . .  are 
of order 10 . . . .  1, and that r/2., , and rh, _,  are of order 10 . . . .  -' for n>~0. 
For these reasons, this Navier-Stokes flow can be adequately 
approximated by a function in the form 

N N 

~,,(t) c o s k n y +  ~ ~t.,(t) cos(lx +kny)  
I t = l  I t =  - - g  

N 

+ ~ ~2.,,(t) cos(2 lx+kny)  (22) 
n =  - -  N 

for N >  1. Here, for simplification, we take N = 3 .  By the previous 
reasoning, Eq. (19) in H~. k is projected onto the 17-dimensional space 

H c , = span{cos kny, cos(Ix + mky ), cos(2lx + inky) [ n = 1, 2, 3, 

m =  - 3  ..... 3} 
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Navier-Stokes flow is truncated to the following form: 

3 10 

t~( t ) - - -~ Xi ( t ) cosk j y+  ~ X , , ( t ) cos ( l x+k (n -7 )  y) 
j =  I s t = 4  

17 

+ ~. X,,,(t) c o s ( 2 l x + k ( m -  14) y) 
m =  I1 

On setting, for 1 ~< j ~ 3, 4 ~< n ~< 1 O, and 11 ~< m ~ 17, 

aj=k2j 2, 
~j = sin kjy, 

ffj = cos kjy, 

we have 

a,,=12 + k 2 ( n -  7) z, 

r ,, = sin( lx + k( n - 7 )  y), 

~,, = cos( Ix + k(n - 7) y), 

a,,, =412 +k2(m - 14)'- 

~b,,, = sin(2lx + k(m - 14) y) 

~b,,, = cos(2& + k ( m -  14) y) 

3 I 0  

-O.,,~J = ~. kjXj(t) ~/+ ~ k ( n - 7 )  X.(t) (b,, 
j = 1 n = 4 

17 

+ ~. k ( m -  14) X,,,(t) •,,, 
m =  I I  

10  17 

O,.AO = ~ la,,X,,(t) r + E 21a,,,X,,,(t) ~b,,, 

| 0  17 

--0.,4k= ~ lX,,(t)r ~. 21X,,,(t)~b,,, 
n = 4 m = I I 

3 I 0  

c3;,zlO= 2 kjaiX#(t)~bJ+ ~ k(n-7)a, ,X,,( t lCL, 

17 

+ ~ k ( m -  14) a,,,X,,,(t) ok,,, 
m = I I 

and so. after the necessary manipulations, the nonlinear contribution is 
given by 

o.,.0 o,.z/q, - o.,.~o o.,.~q, 
,0  

( a , , - - a , , _ j )  X ,  t X . _ j  
.i = I n - - - - 4 +  j 

i, ) 
+ 2  ~ (a, ,--a .... .~) X,,,X,,,_j ~j 

m = I I + j 
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3 ~ / u ) - i  
+,E, [ E I , , , - . , ,+ , )x .x , ,+ ,<  

�9 = " . . i t =_  I 

II) 
- E 

, = 4 + / 
(a t -  a,, ~) X,X,,_ j~,,) 

J7 k l ( 2 n  - m )  

+ E  L 2 u ) =  II 4 < ~ H . m  *t~< 10 

( a , , , - a  ...... ) X,,,X, . . . . .  r  

..~ / 17 / 
+,~"l klj .... ~=11 (aJ-a" '+ i) XiX"'+ ir 

17 

- y ,  

, I  = I I + f 

( a i - a  .... ;)Six . . . .  jr 

t7 kl(2n - m) 
- Y X 2 a,,x, ..... x,,,/.,,,+E 

m = I I 4 ~< u . . ~  - -  u <~ I l l  

where E is a term orthogonal to the 17-dimensional space. Equation (19) 
in H~., is thus truncated to the following coupled set of 17 ordinary 
differential equations: 

1 7  

0=X 
i = 1  

which on expansion gives 

~ dXi iv 
o= 7-r Y. ,,x,C,,+kr 

i = 1  i = 1  

-- a,, i \ = a'--ct"-iX,,X,, ~ + 2  ~, a . . . .  X,,,X,,, ~ ~'i 
i = t ,, 4 + i a.i c{i m = I I + . j  

=. " 

3 k l j ( n ) - i a / _ a , , + /  If) el/ __ .It u 1 

\ , -  , = 4 + j  a. 

,7 k l ( 2 n  - m ) ( a , , , -  a . . . . .  ) Z , , / V ,  . . . . .  ~b,, + ~  
m = l l  4~<tt,  m - . ~ < 1 0  2a,, 

.= a j - a . ,  XjX,,,+j~,, ,  
3 / 17- j +.J 

+ ,~_a, kly .... ----'~ll a,,, 
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_ ~ a/-a,,,a,,, j Xjx,,,_jr 
m = I I + . /  

Iv kl(2n -m)a,,x ' . . . .  X,,r 
- E Y.  2,,,,, - 

, ' i t  = I I 4 ~ < l t . m - I I ~ <  10 

The rewriting of this coupled set of equations in the form 

dX 
--77 = F/. k. ~.(X), X = ( X t  ..... Xi7) (23) 
tSl I 

leads itself to a discretization by the four-step Adams-Bashforth method to 
give 

h 5F. X , , + l = X , , + ~ ( 5  /k.~.(X,,)--59F/.k.~(X . . . .  i) 

+ 37FI.,.~.(X,,_ =)-9FI.,.~.(X,,_ 3)) 

where a step length h = 0.0002 is again chosen. 
Similar to Section 3, now we take (k k) = ( l ,  2), (1, 3), and (2, 3) as 

examples to display numerical experiments on global attractors of the trun- 
cated model in Fig. 3 for k = 2 and in Fig. 4 for k = 3 through their phase 
portraits on the (XT,)(6) plane for the Reynolds number 2 = 50 or 2 = 200. 
As in Section 3, the discretization starts respectively from the two initial data 

X +- = ( - 1 / k ,  X2,...,X6, -t-0.001, Xs ..... Xa7), X, ,=0  

X + and X -  are very close to the saddle point X . = ( - 1 / k ,  X2 . . . . .  X I 7  ) with 
X , = 0 ,  the projection of - ( l / k ) c o s  ky on H~k, but are not in the stable 

0.25 0.25 

'L'j/ " - - .  ,..,, 

-0.25 
4 ,  o o.8 ~'z?d.0 0 0* 

(e) ('n) 

Fig. 3. Phase portraits on the (X7, X~,) phme for the global attractor or tile one-dimensional 
unstable manifold of X. for tile 17-mode truncation model with / =  I and k - 2 .  The two 
stable equilibrium points are X + and X~, .  Here (a) 2 = 5 0 ,  (b) 2=200 .  1.2 . -  



3 2 4  C h e n  and  P r i c e  

0.25 0.2.5 

\ 

0 0.8 

0 .12  

- 0 . 12  

(al 

[,~,, -.. 
t _,Y " \ .  

t 
. i 

, I f' 

. .  " y  

0 , 8  

0.12 
(b) 

-0.5 0 0.5 "0"I~0.5 0 0.5 
(c) (d) 

Fig. 4. Phase portraits on the (XT, X6) plane for the two typical heteroelinie orbits joined at 
the saddle point Xo and ending respectively at the stable equilibrit, m points X + arm X/7 ~. 1.3 
Here (a) (1, k, 2 ) = ( 1 , 3 , 5 0 ) ,  (b) (1, k, 2 ) = ( 1 , 3 , 2 0 0 ) ,  (c) (1, k , ) , ) = ( 2 , 3 , 5 0 ) ,  (d) ( I ,k , ) , )  = 
12. 3, 200). 

manifold of Xo. We find that the discrete flow from X § (resp. X - )  
approaches a stable equilibrium point in H:. k, which denoted by X + (resp. I,k 

X/_k). 
It should be noted that many other discrete orbits with initial data 

close to the attractor are examined. They approaches either X + /. A or X/7 k. 
From Figs. 3 and 4 together with Theorems 2.1 and 3.1 we readily see 

that X~. 2 (resp. X+3) are the only equilibrium points in H~.2 (resp. H2.3) 
bifurcated from Xo. Moreover, there are two pitchfork bifurcation values 
2 * < 2 *  for Eq. (23) with ( l , k ) = ( 1 , 3 L  The global attractor of the 17- 
mode truncation model in H~.3 coincides with Xo when 0 < 2 < 2 * ,  
contains the two stable equilibrium points X+r:.3 when 2 ' < 2 < 2 " , .  and 
conains the two stable equilibrium points X + and the two saddle points 1,3 

X~ 3 having respectively a one-dimensional unstable manifold in HL 3 when 
2 > 2*. From Figs. 3 and 4 we see that the orbits generated by the initial 
value X + (resp. X ) are almost the heteroclinic orbits starting from Xo and 
ending at X+,.k (resp. X;Tk),. and the stability of X/.+-k in H/. k remains 
unchanged as ~ increases. 

Thus, on the condition that the 17-mode truncation model is a 
suitable approximation of Eq. (19) in H~, k, we find that the topological 
structure of global attractors of Eq. (19) in H~.k and Eq. (21) with 
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(/, k ) = ( 1 ,  2), (2, 3) is the same. Since n ~  3 ~ H / . 3 ,  from Theorem 2.1 we 
see that there are two pitchfork bifurcation values 0 < 2 ~ < 2 2 .  When 
0 < 2 < 2 ~ ,  the global attractor of Eq. (19) in H~. 3 coincides with the 
steady-state solution ~o = - ( 1 / 3 ) c o s  33'. When 2 t < 2 < 2,,  ~0 has a one- 
dimensional unstable manifold and the two bifurcated steady-state solutions 
are stable in H~. 3. When ,t > 22, ~'o has a two-dimensional unstable manifold 
in H ~. 3. Each of the second pair of bifurcated steady-state solutions is stable 
in H~. 3 and has a one-dimensional unstable manifold in H~, 3- 

This additionally confirms the trends observed in the four-mode 
truncation model in Section 3. 

5. HOPF B I F U R C A T I O N  

In previous sections, we gave an analysis and numerical experiments 
on pitchfork bifurcation and stability for bifurcated solutions of Eq. (19) in 
the special invariant subspaces H~. k. In order to provide more evidence for 
the fluid motion outside these invariant spaces, we shall take k = 2 as an 
example and study the long-time behavior of the Navier-Stokes flow in the 
subspace ..~Zg. 2,/. 2 instead of H 2t. 2- ~#~. _ is also a flow-invariant subspace. 

I.emma 5.1 For  every 2 > 0 and every initial state ~bo ~ JgT. 2, Eqs. 
(5) and (6) admit a unique global solution ~,~ C([0, co); ~("~. 2). 

This lemma is deduced in completely the same way as Lemma 2.1. 
Thus we reduce Eqs. (5)-(6) in J # ] . 2  

~'" -- zl~ + B~ ;,(~) = 0 ,  ~b = ~k(t, .) 6 a(~ ~ (24) 
d t  -" 

We shall find that the steady-state solution - ( 1 / 2 )  cos 2), will lose stability, 
Hopf  bifurcation arises for this equation, and the bifurcated time- 
dependent periodic solution is likely stable in Jg~. 2 when 2 varies. 

We recall the operator - A + 2A 2 = -- A + 2A - J sin 2y (zl + 4) 8.,., the 
Fr6chet derivative of the operator - A  +2B_,.~ at ( - 1 / 2 ) c o s  2y. As is well 
known (see, for example, refs. 7 and 15), Hopf  bifurcation is essentially 
based on the existence of a simple pair of conjugate eigenvalues of 
- A  + 2A2 eros'sing the imaginary line as 2 increases. This reads as follows: 

Lemma 5.2. For 2 > 0 ,  the operator - - d + 2 A  2 in ~g~.2 has a 
eigenvalue p(2) with I m p ( 2 ) ~ 0  such that for some constants 2~ > ~ > 0 ,  

Rep(2)  < 0  when 0 < 2 < ~  

Rep(2~)=0 ,  R e p ( 2 ) > 0  when 2 ~ < 2 < 2 j + ~  
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and fur thermore,  the ope ra to r  - L I  + J,A 2 in or 2 with 1 #  1 has no eigen- 
value p satisfying Re p ~< 0. 

:yg2 Here, without  loss of  generality, we have supposed  that  .. t._, are 
complex spaces. 

For the special case k = 2 ,  a similar result in the who le  space was  
obtained by Liu (see, for example ,  ref. 13). However ,  we shall provide an 
alternative and simpler approach for this l emma by following ref. 3, where 
we examined t ime-dependent  periodic so lut ions  to Eqs. (1) - (2)  with k an 
even number .  

Proof. First, from Corol lary  2.2 we see that  the spectral problem 

-A~b+2A~r in Y'P~.2 ( R e p ~ < 4 )  (25) 

has no eigenfunction in the form ~b=Z,~' = , ~,cos(2mlx+2ny) f o r / > / 0 ,  
m >/0 and Re p <~ 0. As in the p r o o f  of  L e m m a  2.2, an e igenfunct ion ~b to 
this spectral problem can be supposed  in the following form: 

~b= ~" ~.,, cos(Ix + 2ny + y), 1>10 
n = s 

Thus  Eq. (25) with this eigenfunction becomes 

" ) ~  l, m - I ~ l, ,,t I 

2t~ L ,.  

for any integer m, where 

/J/. ,,, = 12 + (2m + 1 )2 

20~1. ,,,+, ~./.,,, +,  + (/q/. , , , - P )  r ,,, = 0 
2/~/. m 

and ~c, , ,=I(I ' -+(2m+I)2-4)  

The assert ion in the case / = 0  follows immediate ly  
Proceeding to the remaining case 1>~ 1, we also set 

(26) 

from Eq. (26). 

L . . . .  1 
+ ~ for m >t 0 ^ = ~ I,  m + I 2~1 . . . .  )'l .... 

E 2( P ) 1 
[ I  . . . .  f l ' - -  ' ' ' {  ~ I . . . .  I = ,  for rot> I 

) ~ t .  ,,, } ' l .  - ,,, 

Thus  we see that  Eq. (26) is equivalent  to the following system of algebraic 
equations:  

o~/, ,,,r .... ~/. _,,, c.'1 . . . .  
^ , m>~0;  ~, . . . .  - ,,, ~,. m > ~ l  (27) 

~q/. , , , -  ~x/ .... i~/ .... i ~1. i i . . . .  
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This  toge the r  with the b o u n d e d n e s s  o f  Yl. +,,, f rom the fact r e H 2 implies 

--1 
~' = for m~>0 

,,, 1 ' ?/  .. . .  2(/]/.,, _ p)/]/ .  + 
^ 

1 )~/  . . . .  2(/],.,,,+, - P) fl/.,,, + I + = 

).O~L ,, + I 

1 

P/. ,,, - 2( t,t~/. ,,, - P ) er~/ .... 1 , for m ~< - 1 

28/ .... 2(/]/ . . . . .  , - P } / ] /  . . . . .  , 1 
+ _  

2o~L ,,, - i 

Thus  if (~,  p)  is a so lu t ion  to the spectral  p r o b l e m  (25), the e igenfunct ions  
r fo rm a one -d imens iona l  space,  since Eq. (27) gives for an a rb i t r a ry  
cons t an t  c 

~I, ++_m''')3l, + I 0 ~ 1 . 0  

~./. ,, = c ,  ~/.  _+,,, = ~ o~/. _+,,, , m / >  1 

^ ^ 

O n  the o the r  hand,  fl/. ,,, = f l / . - ,  . . . .  and  o~/. ,,, = d / ._ ,  .... for m/>  0 yield 
) : .o-a - - ~ / .  _ , ,  and  Eq. (27) gives ~/ .0= I/~/. - i .  Hence  f , l .o=i, and  so Eq. 
(25) becomes  

- 1  

2A.,,(A.,,-pl 
2~:.o + 2(/]/. i - p ) / ] / . ,  1 

+ 1 2oi,., 2( / ] , ._ , -  p) / ]L 2 + _  

2o~:. 2 

= i  

If  l~> 2 and  Re p ~< 4, the real par t  o f  the lef t -hand side o f  this equa t ion  is 
negative.  Therefore  we need on ly  cons ider  the case l =  1, tha t  is, 

2(2 - p )  1 
- - +  - i  (28) 

2 2fl~(fl, --p) 1 
~l),  2f12(f12 -- p)  1 + .  

% 2  

with 

^ 

fl,, =il l . , ,  and  % = o~,.,, 

S 2 2  8 6  ~ " ~  I - _ - _ _  
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Second, to show the existence of the eigenvalue p with Re p ~< 2, we 
multiply Eq. (28) by 2 to obtain 

1 
--4-- i2+fl t (2f l~--2 p) 1 - --2p 

+ 
5122 f12(2f12--2p) 1 

4 .  
5 2 ' .  

(29) 

Let 

/ l =  --2 Rep, v=  - 2 I m p  

tbAp, v)=  (Re ~;.(p, v), Im ~;.(p, v)) 

where ~u(p, v) denotes the left-hand side of Eq. (29). This equation is 
solved when a suitable value is found for (p, v) = (p(2), v(2)) a fixed point 
of q~. 

From Eq. (29) it follows that Re ~ ( p ,  v)> - 4  and 

5i 22 
I ~ ( p ,  v)+41 ~<2-~ <~2+22 (30) 

flt(2fl, + P) 

for all p ~> - 4, v E R, and 2 > 0, Hence for K = 4 + 2 + 22, 

~;.: [ --4, oo)x R --* [ --4, K] x [ - K ,  K] 

That is, ~a maps [ - 4 ,  K] x [ - K ,  K] into itself. Note that ~.(/~, v) is 
continuous with respect to (p, v, 2). By the Brouwer fixed-point theorem 
(see, for example, ref. 16), ~x admits a fixed point (p(2), v(2)) e [ - 4 ,  K] x 
[ - K ,  K]. We can make a suitable choice for the fixed points of ~x to 
ensure the continuity of p(2) and v(2). 

Finally, it remains to prove that p(2) crosses the zero point. Let us 
suppose, on the contrary, - 4  <p(2)~<0 for all 2 > 0. By Eq. (30), 

~P;~(p(2), v(2)) --* - 4 < 0 as 2--+0 

In order to prove ~a(p(~.), v(2))>0 for some 2 > 0 ,  we introduce the 
following. 

Lemma 5.3. Let (p(2) ,v(2))  be the fixed point of ~a with 
- 4 < p ( 2 )  ~<0. Then ]v(2)l ~<22 for all 2 > 0 .  

The proof of this lemma will be shown at the end of this section. 
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Without loss of generality, by this iemma we can suppose that 

v(2) 
2 ~Vo as 2 ~ o o  (31) 

for some constant Vo. Setting real functions h = h(2) and g =g(2) such that 
for (it, v )=  (/1(2), v(2)), 

h + ig - f12(2f12 +lt  + iv) q 
a 2 f13(2f13 + i t  + iv) 1 + 

~X3~. ,84(2,84 +it + iv) t +:-- 
o~4)t 

we have 

h(2) >f12(2f12 + It(2)) > f12(2fl_~ - 4 )  
0C 2 (X 2 

>52,  2 > 0  (32) 

and, by Eq.(28),  

4 +/.t + iv 
+ = i  

2 5(20 +p + iv) 1 
32 + h + i g  

and thus 

h + i g  1 
2 5 ( 2 0 + p + i v )  1 + 

32 4 + # + iv 
+ i  

Since 

5c 1 T+c- r 
we have, by Eq. (31), 

lim ~ = O, 
A ~ O : ,  / l ,  

for all c e R 

g(2) ( 5 % +  1 ~ - '  
(33) 
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On the other hand, it follows from Eq. (29) that 

p + 4 = R e  
5(20 +/t + iv) 1 q 

322 h + ig 

(5v(h2 +g2) 
5(2o+/1) h \ ~-" gJ'- 

32-' + ~ +  (h2 + g2) ( 5(20 + p)(h2 + + h )  

i> 5(20 +,u) h {5v(h2 +g2) ,~2 1 
3; + ~ + (  3:7 g) h(h:+g-') 

1 

5(20 + lt) 
32-' 

/ 5,,'f l :5,,g_ ): 
1-\322 j h+~\322 1 

1 
>t 35 / 5,,',2 f5vg ~2 by Eq. (32) 

) \322 

which, by making use of Eqs. (31) and (33) and setting 2 --+ ~ ,  tends to 

f 5 V o , , g ~ , )  )-2 
52 \ y >"_m, - - -  1 

= /5Vo I 1 1) 2=52 (5vd +1) ) 2 ~ . , _  +1 >13 

vo+ 1 

This implies that there exists a constant ~. > 0 such that p(~.) > 9. This leads 
to a contradiction, and implies the existence of the desired positive con- 
stants 2~ and 6. The proof is complete. 

Now we proceed to the proof of Lemma 5.3. 
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Proof of Lemma 5.3. Forn>~Oand 2>O, weset 

d,,(2) = -- 
p,,(2p,, +/42) + iv(;,)) 1 + 

fl,,+t(2fl,,+, +l~(2)+iv(2)) 1 + -  

which gives, for 2 > O, 

ct,,2 2 
[d,,(2)l ~< ~ < - -  * 0 as n--* ~ (34) 

fl,,(2fl,,+lt(2)) 2fl , , -  4 

and 

and so 

fl,,v(R) I 
Im d,,+ 1(2) %----~ + Im d.(2 ) 

Iv(~)l 1 
IImd,,+,(2)l/> T IImd,,(2)l' n>~O (35) 

On the contrary, we suppose that the assertion of the lemma is not 
valid. Then there is a positive value 2' such that Iv(,V)l > 2,t'. By Eq. (28), 
do(Z)-i.  This together with Eq. (35) implies [d,,(2')] ~> 1 for all n >/0. This 
contradicts Eq. (34). The proof is complete. 

Based on Lemma 5.2, we now follow the study in the preceding section 
to provide an 18-mode truncation model for Eq. (24) and give computa- 
tional result for the bifurcated time-dependent periodic solution, which 
seems stable in ~q,2 for all 2. 1 , 2  

As in the derivation of Eq. (22), we see that for every 

~k= ~.(t) c o s 2 n y +  ~ ~ q ...... ( t )cos(2mx-x+2ny+ y) 

+ ~ ~ ( ...... (t) cos(2mx+2ny) 
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the solution of  Eq. (24) can be adequate ly  app rox ima ted  by a function in 
the form 

N N 

~, r cos2ny+ 
n=l n= --g--I 

q,. ,,(t) cos(x  + 2ny + y) 

+ 
N 

E 
, 1 =  -- N 

~,, ,,(t) cos(2x + 2ny) 

since the p roo f  of  L e m m a  5.2 shows that  r/ ...... have  Limit symmet ry  with 
respect to q,,,. _ , _  ~ for n >~ 0. F r o m  numerical  exper iments  we find that  (,,, 
ql .... and q t ._ , , _ ,  are of  order  10 . . . .  ~ and (~.,, is of  order  10 . . . .  -" for 
n >~ 0. Set N = 3, and  set 

b j = 4 j  2, b , , = l + ( 2 ( n - 8 ) + l )  2, b , , , = 4 + 4 ( m - 1 5 )  2 

~i=cos 2jy, ~b,,=cos(x + 2ny + y), ~b,,,=cos(2x + 2ny) 

for 1 ~<j~<3, 4 ~ n ~ <  11, and 12~<m~< 18. The  Nav i e r -S tokes  flow is t run-  
cated to the form ~ = Z]~=I XAb, Fol lowing the procedure  for producing  
the 17-mode t runcat ion  model ,  we thus project  Eq. (24) onto  the 18-dimen- 
sional space span{~bi I i =  1 ..... 18} to obta in  the following 18-mode t runca-  
t ion model:  

~ dXi 18 
O =  --~- ~b,+ Y. b,X,O,+k6 

i = 1  i = 1  

= - -  b " - b " - J X , , X , , _ i + 2  ~_, -.- - X,,,X,,, j}tl'i 
j= ,  , ,=4+j bj . . . .  ,2+/ b, - / " 

, ,, 6 j - b , , _ j x x  ' ) 
"Ji-lE I T ~,n'~'~=4 ~ +j "z'~/z~n+/llJn- E bn / ,-/q/n 

" =  - -  n = 4 + j  

,8 k l (2n -m) (b , , , - b  ...... ) X,,,X, . . . .  ~b,, 
+ E 2 2b,, 

I 1 , =  12 4 ~ < n . m - - n ~ <  I I  

+ klj b j -  b,,, +j X/X,,, +i~b,,,- y. 
j =  I \ m  = 12 b., ,. = 12 +./ 

bj --b~b .... j Xj X,,, _ i~b ,,, ) 

)8 kl(2n - m )  b, X, ..... X,,~/,,, 
- Z 2 2 <  

, n  ~ 12 4 ~<n,  m - - n  ~< I I 
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Fig. 5. The (Xx, XT) phase portraits of the limit cycle solution derived from the 18-mode 
truncation model for (a) Reynolds number 2 = 50 and (b) Reynolds number 2 = 200. 

for k = 2 and l = 1, which is rewritten as the system of ordinary differential 
equations 

dX 
dt ~l.k.x(X), X = ( X i  ..... Xis), I=  1, k = 2  

Using the four-step Adams-Bashforth method with step length 
h = 0.0002 and 2 = 50 or 200 again to discretize this set of coupled equa- 
tions, we find a periodic equation, the phase portraits of which on the 
(Xs,)(7) plane are displayed in Fig. 5. From this computation it seems 
valid that Eq. (24) has a unique Hopf  bifurcation value and the bifurcated 
time-dependent periodic solution is stable as 2 increases. 

6.  R E M A R K S  

We have examined steady-state solutions in H~, k and time-dependent 
periodic solutions in Jf~. 2 for the Navier-Stokes equations (5)-(6), respec- 
tively. However, the subspaces /~2 and ~ - '  ~.k ~,_ are also invariant with 
respect to Eqs. (5)-(6). It is readily seen that all analysis and computation 

., 9 ~ ~ .,Tz 2 results on H~'-'. k and d?'7. 2 replaced respectively by the spaces HZk and : ~ .  2 
are remain valid. 

Thus, when k = 2 ,  H 2 has the flow-invariant subspaces H~. 2, /I~,2, 
~7." " 2, and ~2t. 2 for 11>0. The steady-state solution ~bo = - ( I / 2 )  cos 2y is 
always stable for Eqs. (5)-(6) reduced in these subspaces when I ~ I .  
Pitchfork bifurcation phenomena arise in H t ,  - and /I~,2, respectively, 
whereas Hopf  bifurcation phenomena arise in ~ 2  and Jet~i. 2, respectively. 

1 . 2  
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Therefore we can especially give the conclusion for the case k---2. 
Denoting by 2~, the pitchfork bifurcation value and by 2H the Hopf bifurca- 
tion value for Eqs. (5)-(6) with k = 2 ,  we have 0 < 2 , < 2 n < 5 0  by com- 
putation. When 2 < 2:, the steady-state solution ~b o is globally attractive in 
H 2. When 2 z , < 2 < 2  H, ~b o has a one-dimensional unstable manifold in 
H~._, (resp. H~.2), which now contains a pair of stable steady-state solu- 
tions for Eqs. (5)-(6) with k = 2  reduced in H-',., (resp. H~.2).-" When 
2 >  2n, two time-dependent periodic solutions arise respectively in ~:~.2 

. , 7 l  "~ 9 and J~L2 such that one is stable in J:T._, and the other is stable in f:~.2. 
Consequently, any solution of Eqs. (5)-(6) with k = 2 and 2 > 0 starting 

from either the mode cos(mx+ny) or the mode sin(mx+ny) in H -~ is 
attracted by one of the five steady-state solutions or one of the two periodic 
solutions. Here m and n are arbitrary integers. 
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